skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banuelos, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Structural variants (SVs) are rearrangements of regions in an individual’s genome signal. SVs are an important source of genetic diversity and disease in humans and other mammalian species. The SV detection process is susceptible to sequencing and mapping errors, especially when the average number of reads supporting each variant is low (i.e. low-coverage settings), which leads to high false-positive rates. Besides their rarity in the human genome, they are shared between related individuals. Thus, it’s advantageous to devise algorithms that focus on close relatives. In this paper, we develop a constrained-optimization method to detect germline SVs in genetic signals by considering multiple related people. First, we exploit familial relationships by considering a biologically realistic scenario of three generations of related individuals (a grandparent, a parent, and a child). Second, we pose the problem as a constrained optimization problem regularized by a sparsity-promoting penalty. Our framework demonstrates improvements in predicting SVs in related individuals and uncovering true SVs from false positives on both simulated and real genetic signals from the 1000 Genomes Project with low coverage. Further, our block-coordinate descent approach produces results with equal accuracy to the 3D projections of the solution, demonstrating feasibility for more complex and higher-dimensional pedigrees. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)